ACS Review Structure and Preparation of Alkenes - Elimination Reactions

1. Carbon-carbon double bonds do not freely rotate like carbon-carbon single bonds. Why?
A. The double bond is much stronger and thus more difficult to rotate.
B. Overlap of the two 2 p orbitals of the π bond would be lost.
C. The shorter bond length of the double bond makes it more difficult for the attached groups to pass each other.
D. Overlap of the sp^{2} orbitals of the carbon-carbon σ bond would be lost.
2. What is the IUPAC name of the following compound?

A. 2,5-dimethyl-1-hexene
B. 1,4-dimethyl-1-hexene
C. 2,5-dimethyl-2-hexene
D. 2,5-dimethyl-5-hexene
3. What is the IUPAC name of the following compound?

A. 2-methyl-3-propyl-2-pentene
B. 3-ethyl-2-methyl-2-hexene
C. 4-ethyl-methyl-4-hexene
D. 4-methyl-3-propyl-3-pentene
4. What is the IUPAC name of the following compound?
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
A. 3-ethyl-8-methyl-3-nonene
B. 7-ethyl-2-methyl-6-nonene
C. 1,1-diethyl-6-methyl-3-heptene
D. 3-ethyl-7-isopropyl-3-octene
5. How many isomeric alkenes of formula $\mathrm{C}_{4} \mathrm{H}_{8}$, including stereoisomers, are possible?
A. two
B. three
C. four
D. five
6. How many isomeric alkenes of formula $\mathrm{C}_{5} \mathrm{H}_{10}$, including stereoisomers, are possible?
A. three
B. four
C. five
D. six
7. What is the IUPAC name of the following compound?

A. 3-bromo-2-methylcyclohexene
B. 1-bromo-2-methyl-2-cyclohexene
C. 6-bromo-1-methylcyclohexene
D. 2-bromo-1-methylcyclohexene
8. What is the IUPAC name of the following compound?

A. 3-ethyl-propyl-1-heptene
B. ethyl-3-vinyloctane
C. 4,6-diethyl-1-octene
D. 3,5-diethyl-1-octene
9. Which of the following alkenes exhibit E-Z isomerism?

I. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$

II. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$

III. $\mathrm{CH}_{3} \mathbf{C H}_{2} \mathbf{C H}=\mathbf{C H B r}$

IV. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

A. I and II
B. I and III
C. II and IV
D. I, II, and III
10. Which of the following alkenes exhibit E-Z isomerism?
I. 1-chloropropene II. 2-chloropropene III. 3-chloropropene
A. only I
B. I and II
C. II and III
D. I and III
11. What is the IUPAC name of the following compound?

A. (E)-3-bromo-1-fluoro-2-methylpropene
B. (Z)-3-bromo-1-fluoro-2-methylpropene
C. (E)-1-bromo-3-fluoro-2-methylpropene
D. (Z)-1-bromo-3-fluoro-2-methylpropene
12. Which of the following $\mathrm{C}_{6} \mathrm{H}_{12}$ isomers has the highest heat of combustion?
A. 1-hexene
B. trans-3-hexene
C. cis-3-hexene
D. 2-methyl-2-pentene
13. Identify the major organic product expected from the acid-catalyzed dehydration of 2-methyl-2-pentanol.
A. 2-methyl-1-pentene
B. 2-methyl-2-pentene
C. 3-methyl-1-pentene
D. cis-3-methyl-2-pentene
14. Which alcohol below would undergo acid-catalyzed dehydration most readily?
A)

B)

C)

D)

A. A
B. B
C. C
D. D
15. What is the slow, rate-determining step, in the acid-catalyzed dehydration of 2-methyl-2-propanol?
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}}$
A. Protonation of the alcohol to form an oxonium ion.
B. Loss of water from the oxonium ion to form a carbocation.
C. Loss of a b-hydrogen from the carbocation to form an alkene.
D. The simultaneous loss of a b-hydrogen and water from the oxonium ion.
16. Which of the following carbocations is(are) likely to undergo a rearrangement?

I

II

III
A. only I
B. I and III
C. II and III
D. I, II, and III
17. Predict the major product of the following reaction:

A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\perp}{\mathrm{C}=\mathrm{CH}_{2}}$
B) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CCHCH}_{2} \mathrm{CH}_{3}$
C) $\mathrm{CH}_{3} \mathbf{C H}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}$
D) $\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C H C H}=\mathrm{CH}_{2}$
A. A
B. B
C. C
D. D
18. Which of the following expressions is the experimentally observed rate law for an E2 reaction of an alkyl halide?
A. \quad rate $=k[R X]$
B. \quad rate $=k[R X][$ base $]$
C. \quad rate $=k[R X]^{2}$
D. \quad rate $=k[$ base $]$
19. Which of the following most readily undergoes an E 2 reaction with sodium ethoxide $\left(\mathrm{NaOCH}_{2} \mathrm{CH}_{3}\right)$?
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CF}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
C. $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$
20. How many isomeric alkenes are possible, including stereoisomers, in the following reaction?

A. two
B. three
C. four
D. five
21. In the dehydrohalogenation of 2-bromobutane, which conformation below leads directly to the formation of cis-2-butene?

I
II
III
A. only I
B. only II
C. only III
D. I and II
22. Which of the following cannot undergo an E2 reaction?

I
II

III
A. only I
B. only II
C. only III
D. I and III
23. Which of the following would you predict to be the best method for doing the following conversion with the highest yield?

A. $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$, heat
B. $\mathrm{NaOCH}_{2} \mathrm{CH}_{3}$
C. (1) PBr_{3} (2) NaOH
D. (1) $\mathrm{PBr}_{3}(2) \mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$
24. When a strong base is used in the elimination reaction of an alkyl halide the mechanism, in general, is:
A. E1
B. E2
C. E1 for tertiary halides, E2 for primary and secondary halides
D. E2 for tertiary halides, E1 for primary and secondary halides
25. Which of the following sets of conditions most favors the E1 mechanism?
A. When the alkyl halide is tertiary and the base is a weak base.
B. When the alkyl halide is tertiary and the base is a strong base.
C. When the alkyl halide is primary or secondary and the base is a weak base.
D. When the alkyl halide is primary or secondary and the base is a strong base.
26. Which of the following would have the fastest rate of reaction to form 4-tert-butylcyclohexene?
A)

B)

$\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$
C)

D)

A. A
B. B
C. C
D. D
27. What is the first step in the mechanism of the dehydration reaction of a tertiary alcohol with sulfuric acid to form an alkene?
A. The loss of OH^{-}to form a carbocation.
B. The protonation of the hydroxyl group.
C. The loss of the proton from the hydroxyl group to give an alkoxide ion.
D. The removal of a β-hydrogen from the alcohol.
28. Which of the following does not give 1,2-dimethylcyclohexene as one of the acid-catalyzed dehydration products?
A)

B)

C)

D)

A. A
B. B
C. C
D. D
29. Including E-Z isomers, how many E2 products are possible in the following reaction?

A. one
B. two
C. three
D. four
30. Which of the following compounds gives a single E 2 product on reaction with sodium ethoxide, $\mathrm{NaOCH}_{2} \mathrm{CH}_{3}$?

III
A. I and II
B. I and III
C. II and III
D. I, II, and III
31. Which of the following will give 2-methyl-1-butene as the only alkene product on treatment with $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in dimethyl sulfoxide?
A. 2-bromo-3-methylbutane
B. 1-bromo-3-methylbutane
C. 2-bromo-2-methylbutane
D. 1-bromo-2-methylbutane
32. If the following E2 reaction proceeds through an anti-periplanar transition state, what product or products are expected?

A. only 1-methylcyclohexene
B. only 3-methylcyclohexene
C. only 4-methylcyclohexene
D. equal amounts of 1-methylcyclohexene and 3-methylcyclohexene
33. Which of the following stereoisomers gives the exclusive E2 product shown?

(only E2 product)
A)

B)

C)

D)

A. A
B. B
C. C
D. D
34. Zaitsev's rule can be used to predict the major product for which of the following reactions?
A. 2-methylpentane $+\mathrm{Br}_{2}$ (with light)
B. 2-bromo-2-methylpentane $+\mathrm{NaOCH}_{2} \mathrm{CH}_{3}$ (in ethanol)
C. 2-methyl-2-pentanol $+\mathrm{PBr}_{3}$
D. 2-methyl-2-pentanol +HCl
35. The acid-catalyzed dehydration of the alcohol shown below gives a major product which results from a carbocation rearrangement. Identify this major product.

A)

B)

C)

D)

A. A
B. B
C. C
D. D
36. Consider the following reaction.

$\mathrm{R}=-\mathrm{CH}_{3}$ or $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
Which statement(s) below is(are) correct?
I. X is the major product based on Zaitsev's rule.
II. The $\mathrm{X}: \mathrm{Y}$ ratio is greater when $\mathrm{R}=-\mathrm{CH}_{3}$ than when $\mathrm{R}=-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$.
III. The $\mathrm{X}: \mathrm{Y}$ ratio is greater when $\mathrm{R}=-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ than when $\mathrm{R}=-\mathrm{CH}_{3}$.
A. I and II
B. I and III
C. only II
D. only III
37. How many different E 2 products are expected in the reaction of 3-bromo-1,1-dimethylcyclohexane with $\mathrm{NaOCH}_{2} \mathrm{CH}_{3}$?
A. only 1
B. 2
C. 3
D. 4
38. Which one of the following compounds cannot undergo an E2 reaction?
A. 1-bromo-2,2-dimethylbutane
B. 1-bromo-2,3-dimethylbutane
C. 1-bromo-3,3-dimethylbutane
D. 2-bromo-2,3-dimethylbutane
39. What is the major product of the reaction sequence shown below?

A. 2-methyl-1-butene
B. 2-methyl-2-butene
C. 3-methyl-1-butene
D. 2-methylbutane
40. Which of the following compounds gives 4,4-dimethylcyclohexene as the exclusive E2 product.
A)

B)

C)

A. A
B. B
C. C
D. both A and B

ACS Review Structure and Preparation of Alkenes - Elimination Reactions кey

1. B
2. A
3. в
4. A
5. C
6. D
7. C
8. D
9. в
10. A
11. A
12. A
13. в
14. D
15. в
16. D
17. C
18. в
19. D
20. в
21. A
22. A
23. D
24. в
25. A
26. D
27. в
28. D
29. C
30. в
31. D
32. в
33. D
34. в
35. A
36. A
37. в
38. A
39. в
40. A
